SH (NA) 030106-A (1203) MEE Printed in Japan Specifications subject to change without notice. This Instruction Manual uses recycled paper.MODELMO
&217(176)81&7,216$1'&21),*85$7,21 WR6XPPDU\
5. PARAMETERS 5 - 3 5.1.2 Gain/filter setting parameters ([Pr. PB_ _ ]) Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin
5. PARAMETERS 5 - 4 Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D. PB46 NH3 Machine resonance suppression filt
5. PARAMETERS 5 - 5 Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D. PC17 COP4 Function selection C-4 0000h P
5. PARAMETERS 5 - 6 5.1.4 I/O setting parameters ([Pr. PD_ _ ]) Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D. P
5. PARAMETERS 5 - 7 5.1.5 Extension setting 2 parameters ([Pr. PE_ _ ]) Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin
5. PARAMETERS 5 - 8 Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D. PE49 For manufacturer setting 0000h PE50
5. PARAMETERS 5 - 9 Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D. PF25 CVAT Instantaneous power failure tough
5. PARAMETERS 5 - 10 Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D. PL15 For manufacturer setting 20 PL16 0
5. PARAMETERS 5 - 11 5.2 Detailed list of parameters POINT "x" in the "Setting digit" columns means which digit to set a value.
5. PARAMETERS 5 - 12 No. Symbol Name and function Initial value (unit)Setting rangePA02 REG Regenerative option Used to select the regenerative
6RXUFH,2LQWHUIDFH
5. PARAMETERS 5 - 13 No. Symbol Name and function Initial value (unit)Setting rangePA04 AOP1 Table 5.1 Deceleration method Refer to Name and func
5. PARAMETERS 5 - 14 No. Symbol Name and function Initial value (unit)Setting rangePA09 RSP Auto tuning response Set a response of the auto tuni
5. PARAMETERS 5 - 15 No. Symbol Name and function Initial value (unit)Setting rangePA14 POL Rotation direction selection/travel direction selecti
5. PARAMETERS 5 - 16 No. Symbol Name and function Initial value (unit)Setting rangePA17 MSR Servo motor series setting When you use a linear ser
5. PARAMETERS 5 - 17 No. Symbol Name and function Initial value (unit)Setting rangePA19 BLK Parameter writing inhibit Select a reference range an
5. PARAMETERS 5 - 18 No. Symbol Name and function Initial value (unit)Setting rangePA20 TDS Tough drive setting Alarms may not be avoided with th
5. PARAMETERS 5 - 19 No. Symbol Name and function Initial value (unit)Setting rangePA23 DRAT Drive recorder arbitrary alarm trigger setting Ref
5. PARAMETERS 5 - 20 5.2.2 Gain/filter setting parameters ([Pr. PB_ _ ]) No. Symbol Name and function Initial value (unit)Setting rangePB01 FILT
5. PARAMETERS 5 - 21 No. Symbol Name and function Initial value (unit) Setting rangePB06 GD2 Load to motor inertia ratio/load to motor mass rat
5. PARAMETERS 5 - 22 No. Symbol Name and function Initial value (unit)Setting rangePB11 VDC Speed differential compensation This is used to set
$XWRWXQLQJ
5. PARAMETERS 5 - 23 No. Symbol Name and function Initial value (unit)Setting rangePB16 NHQ2 Notch shape selection 2 Set the shape of the machin
5. PARAMETERS 5 - 24 No. Symbol Name and function Initial value (unit)Setting rangePB17 NHF Table 5.4 Shaft resonance suppression filter setting
5. PARAMETERS 5 - 25 No. Symbol Name and function Initial value (unit)Setting rangePB23 VFBF Low-pass filter selection Select the shaft resonanc
5. PARAMETERS 5 - 26 No. Symbol Name and function Initial value (unit) Setting rangePB26 CDP Gain switching function Select the gain switching co
3$5$0(7(56 1R 6\PERO 1DPHDQGIXQFWLRQ,QLWLDOYDOXHXQLW6HWWLQJUDQJH3% 95)% 9LEUDWLRQVXSSUHVVLRQFRQWURO9LEUDWLRQIUHTX
5. PARAMETERS 5 - 28 No. Symbol Name and function Initial value(unit) Setting rangePB45 CNHF Command notch filter Set the command notch filter.
5. PARAMETERS 5 - 29 No. Symbol Name and function Initial value (unit)Setting rangePB45 CNHF Table 5.6 Notch depth selection Setting Depth [dB]
5. PARAMETERS 5 - 30 No. Symbol Name and function Initial value (unit)Setting rangePB49 NHQ4 Notch shape selection 4 Set the shape of the machin
5. PARAMETERS 5 - 31 No. Symbol Name and function Initial value (unit)Setting rangePB53 VRF22 Vibration suppression control 2 - Resonance freque
5. PARAMETERS 5 - 32 No. Symbol Name and function Initial value (unit)Setting rangePB58 VRF23B Vibration suppression control 2 - Vibration frequ
66&1(7,,,FDEOH
5. PARAMETERS 5 - 33 5.2.3 Extension setting parameters ([Pr. PC_ _ ]) No. Symbol Name and function Initial value (unit)Setting rangePC01 ERZ Er
5. PARAMETERS 5 - 34 No. Symbol Name and function Initial value (unit)Setting rangePC04 COP1 Function selection C-1 Select the encoder cable com
5. PARAMETERS 5 - 35 No. Symbol Name and function Initial value (unit)Setting rangePC09 MOD1 Analog monitor 1 output Used to selection the signa
5. PARAMETERS 5 - 36 No. Symbol Name and function Initial value (unit)Setting rangePC10 MOD2 Analog monitor 2 output Used to selection the signa
5. PARAMETERS 5 - 37 No. Symbol Name and function Initial value (unit)Setting rangePC20 COP7 Function selection C-7 This is used to select an und
5. PARAMETERS 5 - 38 No. Symbol Name and function Initial value (unit)Setting rangePC27 COP9 Function selection C-9 This is used to select a pol
5. PARAMETERS 5 - 39 5.2.4 I/O setting parameters ([Pr. PD_ _ ]) No. Symbol Name and function Initial value (unit)Setting rangePD02 DIA2 Input si
5. PARAMETERS 5 - 40 No. Symbol Name and function Initial value (unit)Setting rangePD08 DO2 Output device selection 2 You can assign any output d
5. PARAMETERS 5 - 41 No. Symbol Name and function Initial value (unit)Setting rangePD14 DOP3 Function selection D-3 Refer to Name and function c
5. PARAMETERS 5 - 42 5.2.5 Extension setting 2 parameters ([Pr. PE_ _ ]) No. Symbol Name and function Initial value (unit)Setting rangePE01 FCT1
([WHUQDO,2VLJQDOFRQQHFWLRQH[DPSOHXVLQJDPRWLRQFRQWUROOHU 'HWDLOHGGHVFULSWL
5. PARAMETERS 5 - 43 No. Symbol Name and function Initial value (unit)Setting rangePE07 BC2 Fully closed loop control - Position deviation error
5. PARAMETERS 5 - 44 5.2.6 Extension setting 3 parameters ([Pr. PF_ _ ]) No. Symbol Name and function Initial value (unit)Setting rangePF21 DRT
5. PARAMETERS 5 - 45 5.2.7 Linear servo motor/DD motor setting parameters ([Pr. PL_ _ ]) No. Symbol Name and function Initial value (unit)Setting
5. PARAMETERS 5 - 46 No. Symbol Name and function Initial value (unit)Setting rangePL04 LIT2 Linear servo motor/DD motor function selection 2 Thi
5. PARAMETERS 5 - 47 No. Symbol Name and function Initial value (unit)Setting rangePL08 LIT3 Linear servo motor/DD motor function selection 3 Re
5. PARAMETERS 5 - 48 No. Symbol Name and function Initial value (unit)Setting rangePL17 LTSTS Table 5.10 Load to motor mass ratio/load to motor in
6. NORMAL GAIN ADJUSTMENT 6 - 1 6. NORMAL GAIN ADJUSTMENT POINT In the torque control mode, you do not need to make gain adjustment. Before making
6. NORMAL GAIN ADJUSTMENT 6 - 2 (2) Adjustment sequence and mode usage 2ࠥࠗࡦ⺞ᢛࡕ࠼1(㑆ࡕ࠼)2ゲએߢ㑆ߔࠆ?ㆇォਛߩ⽶⩄ᄌേ߇ᄢ߈?㐿ᆎ⚳ੌYesNoYesNoYesNoNoYesࡢࡦ࠲࠶࠴⺞ᢛYesY
6. NORMAL GAIN ADJUSTMENT 6 - 3 6.2 One-touch tuning Connect Mr Configurator2 and open the one-touch tuning window, and you can use the function. Th
6. NORMAL GAIN ADJUSTMENT 6 - 4 6.2.2 Display transition and operation procedure of one-touch tuning (1) Response mode selection Select a response
05-)&&%/0EUDQFKFDEOH 2
6. NORMAL GAIN ADJUSTMENT 6 - 5 Response mode Machine characteristic Low mode Basic mode High modeResponse Guideline of corresponding machine L
6. NORMAL GAIN ADJUSTMENT 6 - 6 (2) One-touch tuning execution After the response mode is selected in (1), pushing the start button during driving
6. NORMAL GAIN ADJUSTMENT 6 - 7 (3) One-touch tuning execution During one-touch tuning, pushing the stop button stops one-touch tuning. If the one-
6. NORMAL GAIN ADJUSTMENT 6 - 8 (7) Clearing one-touch tuning You can clear the parameter values set with one-touch tuning. Refer to table 6.1 for
6. NORMAL GAIN ADJUSTMENT 6 - 9 6.3 Auto tuning 6.3.1 Auto tuning mode The servo amplifier has a real-time auto tuning function which estimates the
6. NORMAL GAIN ADJUSTMENT 6 - 10 6.3.2 Auto tuning mode basis The block diagram of real-time auto tuning is shown below. ᓮࠥࠗࡦPG1㧘PG2㧘VG2㧘VIC㔚ᵹᓮ⽶⩄ᘠ
6. NORMAL GAIN ADJUSTMENT 6 - 11 6.3.3 Adjustment procedure by auto tuning Since auto tuning is made valid before shipment from the factory, simply
6. NORMAL GAIN ADJUSTMENT 6 - 12 6.3.4 Response level setting in auto tuning mode Set the response of the whole servo system by [Pr. PA09]. As the r
6. NORMAL GAIN ADJUSTMENT 6 - 13 6.4 Manual mode If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment
6. NORMAL GAIN ADJUSTMENT 6 - 14 (c) Parameter adjustment 1) [Pr. PB09 Speed loop gain] This parameter determines the response level of the speed c
1. FUNCTIONS AND CONFIGURATION 1 - 1 1. FUNCTIONS AND CONFIGURATION 1.1 Summary The Mitsubishi MELSERVO-J4 series general-purpose AC servo has furth
6. NORMAL GAIN ADJUSTMENT 6 - 15 (b) Adjustment procedure Step Operation Description 1 Brief-adjust with auto tuning. Refer to section 6.2.3. 2
6. NORMAL GAIN ADJUSTMENT 6 - 16 3) [Pr. PB08 Position loop gain] This parameter determines the response level to a disturbance to the position co
6. NORMAL GAIN ADJUSTMENT 6 - 17 6.5 2 gain adjustment mode The 2 gain adjustment mode is used to match the position loop gains of the axes when per
6. NORMAL GAIN ADJUSTMENT 6 - 18 (3) Adjustment procedure of 2 gain adjustment mode POINT Set the same value in [Pr. PB07 Model loop gain] for th
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 1 7. SPECIAL ADJUSTMENT FUNCTIONS POINT The functions given in this chapter need not be used normally. Use them
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 2 (1) Function The machine resonance suppression filter is a filter function (notch filter) which decreases the
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 3 (2) Parameter (a) Machine resonance suppression filter 1 ([Pr. PB13] and [Pr. PB14]) Set the notch frequency,
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 4 7.1.2 Adaptive filter II POINT The machine resonance frequency which adaptive filter II (adaptive tuning) can
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 5 (3) Adaptive tuning mode procedure ৻ቯᤨ㑆ᓟ࠴ࡘ࠾ࡦࠣ⥄േ⚳ੌޕ([Pr.PB01]߇"_ _ _ 2"߹ߚߪ"_ _ _ 0"ߦߥࠆޕ)ࠕ
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 6 7.1.3 Shaft resonance suppression filter (1) Function When a load is mounted to the servo motor shaft, resonan
1. FUNCTIONS AND CONFIGURATION 1 - 2 1.2 Function block diagram The function block diagram of this servo is shown below. (1) MR-J4-500B or less ࣔࢹ
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 7 7.1.4 Low-pass filter (1) Function When a ball screw or the like is used, resonance of high frequency may occu
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 8 (1) Function Vibration suppression control is used to further suppress load-side vibration, such as work-side
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 9 (3) Vibration suppression control tuning procedure The following flow chart is for the vibration suppression
63(&,$/$'-8670(17)81&7,216 9LEUDWLRQVXSSUHVVLRQFRQWUROPDQXDOPRGH32,17:KHQORDGVLGHYLEUDWLRQGRHVQRWVKRZXS
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 11 (a) When a vibration peak can be confirmed with machine analyzer using MR Configurator2, or external equipme
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 12 7.1.6 Command notch filter POINT By using the advanced vibration suppression control II and the command notc
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 13 (2) Parameter Set [Pr. PB45 Command notch filter] as shown below. For the command notch filter setting freque
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 14 7.2 Gain switching function You can switch gains with the function. You can switch gains during rotation and
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 15 7.2.2 Function block diagram The control gains, load to motor inertia ratio, and vibration suppression contro
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 16 7.2.3 Parameter When using the gain switching function, always select "Manual mode (_ _ _ 3)" of &q
1. FUNCTIONS AND CONFIGURATION 1 - 3 (2) MR-J4-700B ࢲࢼ࣑ࢵࢡࣈ࣮ࣞ࢟ᅇ㊰㟁ὶ᳨ฟჾࣔࢹࣝ⨨㟁ὶไᚚᐇ⨨ไᚚᐇ㏿ᗘไᚚ௬࣮ࣔࢱ௬࢚ࣥࢥ࣮ࢲL11L21෭༷ࣇ࢚ࣥࣥࢥ࣮ࢲ㟁☢ࣈ࣮ࣞ࢟N-Cຊ⋡ᨵၿDCࣜࢡࢺࣝ㟁ὶ᳨ฟ㐣㟁ὶಖㆤ㟁ᅽ᳨
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 17 (2) Switchable gain parameter Before switching After switching Loop gain Parameter Symbol Name Parameter
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 18 (c) [Pr.PB29 Load to motor inertia ratio/load to motor mass ratio after gain switching] Set the load to moto
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 19 7.2.4 Gain switching procedure This operation will be described by way of setting examples. (1) When you ch
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 20 (b) Switching timing chart ಾ឵߃ᓟࠥࠗࡦ63.4%CDT = 100msಾ឵߃೨ࠥࠗࡦฦࠥࠗࡦߩᄌൻࠦࡦ࠻ࡠ߆ࠄߩᓮᜰOFFONOFF Model loop gain 100 ĺ
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 21 (b) Switching timing chart ಾ឵߃ᓟࠥࠗࡦ63.4%CDT = 100msಾ឵߃೨ࠥࠗࡦฦࠥࠗࡦߩᄌൻḳࠅࡄ࡞ࠬ[pulse]+CDLCDL0ᜰࡄ࡞ࠬḳࠅࡄ࡞ࠬ Load to moto
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 22 7.3 Tough drive function POINT Set enable/disable of the tough drive function with [Pr. PA20 Tough drive set
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 23 The following shows the function block diagram of the vibration tough drive function. The function detects ma
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 24 7.3.2 Instantaneous power failure tough drive function CAUTION During the instantaneous power failure tough
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 25 (1) Instantaneous power failure time of the control circuit power supply > [Pr. PF25 Instantaneous power
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 26 (2) Instantaneous power failure time of the control circuit power supply < [Pr. PF25 Instantaneous power
1. FUNCTIONS AND CONFIGURATION 1 - 4 1.3 Servo amplifier standard specifications Model MR-J4- 10B 20B 40B 60B 70B 100B 200B 350B 500B 700B Rated
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 27 (b) When the bus voltage does not decrease lower than 158 V DC within the instantaneous power failure time o
7. SPECIAL ADJUSTMENT FUNCTIONS 7 - 28 MEMO
8. TROUBLESHOOTING 8 - 1 8. TROUBLESHOOTING POINT Refer to MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting) for details of alarms a
8. TROUBLESHOOTING 8 - 2 Alarm reset Operation mode No. Name Detail display Detail name Stop method (Note 4, 5) Error resetCPU reset Power offĺo
8. TROUBLESHOOTING 8 - 3 Alarm reset Operation mode No. Name Detail display Detail name Stop method (Note 4, 5) Error resetCPU reset Power offĺo
8. TROUBLESHOOTING 8 - 4 Alarm reset Operation mode No. Name Detail display Detail name Stop method (Note 4, 5) Error resetCPU reset Power offĺo
8. TROUBLESHOOTING 8 - 5 Alarm reset Operation mode No. Name Detail display Detail name Stop method (Note 4, 5) Error resetCPU reset Power offĺo
8. TROUBLESHOOTING 8 - 6 Operation mode No. Name Detail display Detail name Stop method (Note 2, 3) Standard Linear DD 91 Servo amplifier overh
8. TROUBLESHOOTING 8 - 7 8.2 Troubleshooting at power on When the servo system does not boot and system error occurs at power on of the servo system
8. TROUBLESHOOTING 8 - 8 MEMO
$6DIHW\,QVWUXFWLRQV 3OHDVHUHDGWKHLQVWUXFWLRQVFDUHIXOO\EHIRUHXVLQJWKHHTXLSPHQW7RXVHWKHHTXLSPHQWFRUUHFWO\GRQRWDWWHPSWWRL
1. FUNCTIONS AND CONFIGURATION 1 - 5 Model MR-J4- 10B 20B 40B 60B 70B 100B 200B 350B 500B 700B Operation 0 ÛC to 55 ÛC (non-freezing)
287/,1('5$:,1*6287/,1('5$:,1*66HUYRDPSOLILHU 05-%05-%>8QLWPP@$SSUR[$SSUR[
287/,1('5$:,1*6 05-%05-%>8QLWPP@&13&13&133(˳PRXQWLQJKROH $SSUR[$SSUR
287/,1('5$:,1*6 05-%05-%>8QLWPP@&RROLQJIDQDLULQWDNH([KDXVW&13&13&
287/,1('5$:,1*6 05-%>8QLWPP@ &RROLQJIDQDLULQWDNH([KDXVW&13&13&133(
287/,1('5$:,1*6 05-%>8QLWPP@&RROLQJIDQDLULQWDNH([KDXVW 3(&13&13&13
287/,1('5$:,1*6 05-%>8QLWPP@ 3(7(7(7(7(&RROLQJIDQH[KDXVW$LULQWDNH˳PRXQWL
287/,1('5$:,1*6 05-%>8QLWPP@ 7(7(7(3(&RROLQJIDQH[KDXVW$LULQWDNH˳PRXQWLQJK
287/,1('5$:,1*6&RQQHFWRU &1$&1%FRQQHFWRU>8QLWPP@)3)'
287/,1('5$:,1*6E -DFNVFUHZ0W\SH7KLVLVQRWDYDLODEOHDVRSWLRQ>8QLWPP@(%$&')/RJRHWFDUH
287/,1('5$:,1*60(02
1. FUNCTIONS AND CONFIGURATION 1 - 6 1.4 Combinations of servo amplifiers and servo motors Servo amplifier Rotary servo motor Linear servo motor (
10. CHARACTERISTICS 10 - 1 10. CHARACTERISTICS POINT For the characteristics of the linear servo motor and the direct drive motor, refer to section
10. CHARACTERISTICS 10 - 2 (Note 1, 2) Load ratio [%]10001001010.1100 200 300 350050 150 250OperatingServo-lockOperation time [s]10001001010.1100 20
10. CHARACTERISTICS 10 - 3 10.2 Power supply capacity and generated loss (1) Amount of heat generated by the servo amplifier Table 10.1 indicates s
10. CHARACTERISTICS 10 - 4 (2) Heat dissipation area for an enclosed type cabinet The enclosed type cabinet (hereafter called the cabinet) which wi
10. CHARACTERISTICS 10 - 5 10.3 Dynamic brake characteristics POINT Do not use dynamic brake to stop in a normal operation as it is the function to
10. CHARACTERISTICS 10 - 6 (2) Dynamic brake time constant The following shows necessary dynamic brake time constant IJ for equation 10.2. 010203040
10. CHARACTERISTICS 10 - 7 10.4 Cable bending life The bending life of the cables is shown below. This graph calculated values. Since they are not g
10. CHARACTERISTICS 10 - 8 MEMO
11. Options and peripheral devices 11 - 1 11. OPTIONS AND AUXILIARY EQUIPMENT WARNING Before connecting any option or peripheral equipment, turn o
11. Options and peripheral devices 11 - 2 11.1.1 Combinations of cable/connector sets Refer to Servo Motor INSTRUCTION MANUAL (Vol.3) about option
1. FUNCTIONS AND CONFIGURATION 1 - 7 1.5 Function list The following table lists the functions of this servo. For details of the functions, refer to
11. Options and peripheral devices 11 - 3 No. Name Type Description Application1) Servo amplifier power supply connector set CNP1 Connect
11. Options and peripheral devices 11 - 4 No. Name Type Description Application8) STO cable MR-D05UDL3M-B Connector set: 2069250-1 (TE Con
11. Options and peripheral devices 11 - 5 11.1.3 SSCNET III cable POINT Do not look directly at the light generated from CN1A/CN1B connector of s
11. Options and peripheral devices 11 - 6 (3) Dimensions (a) MR-J3BUS015M [Unit: mm] (2.3)(1.7)150(37.65)(13.4)(15)(6.7)(20.9)8+0+50- 0Protecti
11. Options and peripheral devices 11 - 7 11.2 Regenerative options CAUTION Do not use servo amplifiers with regenerative options other than the
11. Options and peripheral devices 11 - 8 11.2.2 Selection of the regenerative option (1) For rotary servo motor and direct drive motor Use the
11. Options and peripheral devices 11 - 9 (b) Losses of servo motor and servo amplifier in regenerative mode The following table lists the effici
11. Options and peripheral devices 11 - 10 (2) For linear servo motor (a) Calculation of thrust and energy Liner servo motorsecondary-side (magn
11. Options and peripheral devices 11 - 11 11.2.3 parameter setting Set [Pr. PA02] according to the option to be used. Selection of regenerative o
11. Options and peripheral devices 11 - 12 (1) MR-J4-500B or less Always remove the wiring from across P+ - D and fit the regenerative option acr
1. FUNCTIONS AND CONFIGURATION 1 - 8 Function Description Detailed explanationDrive recorder function This function continuously monitors the servo
11. Options and peripheral devices 11 - 13 (2) MR-J4-700B Always remove the wiring (across P+ - C) of the servo amplifier built-in regenerative re
11. Options and peripheral devices 11 - 14 11.2.5 Dimensions (1) MR-RB12 [Unit: mm] 5144Approx. 2016916815661263640TE115Approx. 61492 TE1 Tremina
11. Options and peripheral devices 11 - 15 (3) MR-RB50/MR-RB51/MR-RB5N [Unit: mm] 2.3133 82.549 82.5Cooling fan mountingscrew (2-M3 screw)On oppos
11. Options and peripheral devices 11 - 16 11.3 FR-BU2 Brake unit POINT When a brake unit and a resistor unit are installed horizontally or diago
11. Options and peripheral devices 11 - 17 11.3.3 Connection example POINT EM2 is the same signal as EM1 in the torque control mode. Connecting P
11. Options and peripheral devices 11 - 18 (b) When connecting two brake units to a servo amplifier POINT To use brake units with a parallel co
11. Options and peripheral devices 11 - 19 P3P4N-CEmergency stop switch24 V DC310EM2DOCOMDICOMALMServo amplifier2015CN3(Note 11)(Note 13)MCMCCB(No
11. Options and peripheral devices 11 - 20 (2) Connection instructions The cables between the servo amplifier and the brake unit, and between the
11. Options and peripheral devices 11 - 21 2) Control circuit terminal POINT Under tightening can cause a cable disconnection or malfunction. O
11. Options and peripheral devices 11 - 22 (b) Applicable tool Servo amplifier side crimp terminals SymbolCrimp terminal Applicable tool Manufa
1. FUNCTIONS AND CONFIGURATION 1 - 9 1.7 Structure 1.7.1 Parts identification (1) MR-J4-200B or less No. Name/Application Detailed explanation (1)D
11. Options and peripheral devices 11 - 23 (2) FR-BR Resistor unit [Unit: mm] H3 ± 1H1 ± 3Approx.H2Approx.H2D1H ± 5Control circuitterminalMain c
11. Options and peripheral devices 11 - 24 (2) Connection example POINT In this configuration, only the STO function is supported. The forced st
11. Options and peripheral devices 11 - 25 (3) Dimensions AAACFKEEBABEDRating plateFront coverDisplaypanelwindowMounting foot (removable)Mounting
11. Options and peripheral devices 11 - 26 11.5 Power regenerative common converter POINT For details of the power regenerative common converter
11. Options and peripheral devices 11 - 27 When using the FR-CV, always install the dedicated stand-alone reactor (FR-CVL). Power regenerative co
11. Options and peripheral devices 11 - 28 (4) Selection example of wires used for wiring POINT Selection condition of wire size is as follows.
11. Options and peripheral devices 11 - 29 (5) Other precautions (a) Always use the dedicated stand-alone reactor (FR-CVL) as the power factor im
11. Options and peripheral devices 11 - 30 11.6 Junction terminal block PS7DW-20V14B-F (recommended) (1) Usage Always use the junction terminal bl
11. Options and peripheral devices 11 - 31 (3) Dimensions of junction terminal block [Unit: mm] M3 × 6LM3 × 5L36.527.818.87.6244.1154634.5546050
11. Options and peripheral devices 11 - 32 (2) System configuration (a) Components To use this software, the following components are required in
1. FUNCTIONS AND CONFIGURATION 1 - 10 (2) MR-J4-350B No. Name/Application Detailed explanation (1)Main circuit power supply connector (CNP1) Connect
11. Options and peripheral devices 11 - 33 (b) Connection with servo amplifier To USBconnectorServo amplifierCN5USB cableMR-J3USBCBL3M(Option)Per
11. Options and peripheral devices 11 - 34 11.9 Selection example of wires POINT Refer to section 11.1.3 for SSCNET III cable. To comply with the
11. Options and peripheral devices 11 - 35 (1) When using the 600 V Grade heat-resistant polyvinyl chloride insulated wire (HIV wire) Selection e
11. Options and peripheral devices 11 - 36 11.10 Molded case circuit breakers, fuses, magnetic contactors (1) For main circuit power supply Alway
11. Options and peripheral devices 11 - 37 2-d mounting hole(Varnish is removed from right mountinghole (face and back side).) (Note 1)W ± 2W1HMa
11. Options and peripheral devices 11 - 38 11.12 Power factor improving AC reactors The following shows the advantages of using power factor impro
11. Options and peripheral devices 11 - 39 Dimensions [mm] Servo amplifier Power factor improving DC reactor ReferenceW W1 HD (Note)D1 D2 d Termin
11. Options and peripheral devices 11 - 40 (b) Reduction techniques for external noises that cause the servo amplifier to malfunction If there ar
11. Options and peripheral devices 11 - 41 Instrument ReceiverServoamplifierServo motor M2)2)8)1)7)7) 7)5)3)4)6)3) Sensor power supplySensor Noise
11. Options and peripheral devices 11 - 42 (2) Noise reduction techniques (a) Data line filter (recommended) Noise can be prevented by installin
1. FUNCTIONS AND CONFIGURATION 1 - 11 (3) MR-J4-500B POINT The servo amplifier is shown with the front cover open. The front cover cannot be remove
11. Options and peripheral devices 11 - 43 (c) Cable clamp fitting AERSBAN-_SET Generally, the grounding of the shielded wire may only be connect
11. Options and peripheral devices 11 - 44 (d) Line noise filter (FR-BSF01/ FR-BLF) This filter is effective in suppressing noises radiated from
11. Options and peripheral devices 11 - 45 (e) Radio noise filter (FR-BIF) This filter is effective in suppressing noises radiated from the power
11. Options and peripheral devices 11 - 46 (f) Varistor for input power supply (recommended) Varistors are effective to prevent exogenous noise a
11. Options and peripheral devices 11 - 47 11.15 Leakage current breaker (1) Selection method High-frequency chopper currents controlled by pulse
11. Options and peripheral devices 11 - 48 Table 11.3 Servo motor’s leakage current example (lgm) Servo motor power [kW] Leakage current [mA] 0.0
11. Options and peripheral devices 11 - 49 (2) Selection example Indicated below is an example of selecting a leakage current breaker under the fo
11. Options and peripheral devices 11 - 50 11.16 EMC filter (recommended) It is recommended that one of the following filters be used to comply wi
11. Options and peripheral devices 11 - 51 (3) Dimensions (a) EMC filter HF3010A-UN [Unit: mm] 32 ± 285 ± 2110 ± 4258 ± 4273 ± 2288 ± 4300 ± 5M4I
11. Options and peripheral devices 11 - 52 (b) Surge protector RSPD-250-U4 [Unit: mm]41 ± 128.5 ± 1 28 ± 15.5 ± 111 ± 1+30 02004.5 ± 0.5132LeadC
1. FUNCTIONS AND CONFIGURATION 1 - 12 (4) MR-J4-700B POINT The servo amplifier is shown without the front cover. For removal of the front cover, r
$%62/87(326,7,21'(7(&7,216<67(0 $%62/87(326,7,21'(7(&7,216<67(0&$87,21,I>$/$EVROXWHSR
$%62/87(326,7,21'(7(&7,216<67(0 6SHFLILFDWLRQV 6SHFLILFDWLRQOLVW,WHP 'HVFULSWLRQ6\VWHP (OHFWURQLF
$%62/87(326,7,21'(7(&7,216<67(0 3DUDPHWHUVHWWLQJ6HWBBBLQ>3U3$@WRPDNHWKHDEVROXWHSRVLWLRQGHWHF
$%62/87(326,7,21'(7(&7,216<67(0 %DWWHU\LQVWDOODWLRQDQGUHPRYDOSURFHGXUH ,QVWDOODWLRQSURFHGXUH32,17)RUW
$%62/87(326,7,21'(7(&7,216<67(0 5HSODFHPHQWSURFHGXUHRIWKHEDWWHU\LQWKH05%$796(7:KHQWKH05%$796(7UHDFK
$%62/87(326,7,21'(7(&7,216<67(0 &RQILUPDWLRQRIDEVROXWHSRVLWLRQGHWHFWLRQGDWD<RXFDQFKHFNWKHDEVROXWHS
86,1*672)81&7,2186,1*672)81&7,2132,17,QWKHWRUTXHFRQWUROPRGHWKHIRUFHGVWRSGHFHOHUDWLRQIXQFWLRQLVQRWDYDLODE
86,1*672)81&7,215HVLGXDOULVNVRIWKH672IXQFWLRQ0DFKLQHPDQXIDFWXUHUVDUHUHVSRQVLEOHIRUDOOULVNHYDOXDWLRQVDQGDOOD
86,1*672)81&7,216SHFLILFDWLRQV 6SHFLILFDWLRQV,WHP 6SHFLILFDWLRQV6DIHW\IXQFWLRQ 672,(&(16DIHW\
86,1*672)81&7,210DLQWHQDQFH7KLVVHUYRDPSOLILHUKDVDODUPVDQGZDUQLQJVIRUPDLQWHQDQFHWKDWVXSSRUWVWKH0LWVXELVKLGULYH
1. FUNCTIONS AND CONFIGURATION 1 - 13 1.7.2 Removal and reinstallation of the front cover CAUTION Before removing or installing the front cover, tu
86,1*672)81&7,216LJQDOGHYLFHH[SODQDWLRQV ,2GHYLFH6LJQDOQDPH&RQQHFWRUSLQ1R'HVFULSWLRQ,2GLYLVL
86,1*672)81&7,21&RQQHFWLRQH[DPSOH32,177XUQRII672672DQG672DIWHUWKHVHUYRPRWRUVWRSVE\WKHVHUYRRIIVWDWH
86,1*672)81&7,21([WHUQDO,2VLJQDOFRQQHFWLRQH[DPSOHXVLQJD05-'VDIHW\ORJLFXQLW32,177KLVFRQQHFWLRQLVI
86,1*672)81&7,21([WHUQDO,2VLJQDOFRQQHFWLRQH[DPSOHXVLQJDQH[WHUQDOVDIHW\UHOD\XQLW32,177KLVFRQQHFWLRQLVIRUW
86,1*672)81&7,21([WHUQDO,2VLJQDOFRQQHFWLRQH[DPSOHXVLQJDPRWLRQFRQWUROOHU32,177KLVFRQQHFWLRQLVIRUWKHVRXUFHL
86,1*672)81&7,21'HWDLOHGGHVFULSWLRQRILQWHUIDFHV7KLVVHFWLRQSURYLGHVWKHGHWDLOVRIWKH,2VLJQDOLQWHUIDFHVUHIH
86,1*672)81&7,216RXUFH,2LQWHUIDFH,QWKLVVHUYRDPSOLILHUVRXUFHW\SH,2LQWHUIDFHVFDQEHXVHG,QWKLVFDVHDOO&a
86,1*672)81&7,210(02
14. USING A LINEAR SERVO MOTOR 14 - 1 14. USING A LINEAR SERVO MOTOR WARNING When using the linear servo motor, read the Linear Servo Motor Instru
14. USING A LINEAR SERVO MOTOR 14 - 2 14.1.2 Servo system with auxiliary equipment CAUTION Connecting an inappropriate linear servo motor to the CN
1. FUNCTIONS AND CONFIGURATION 1 - 14 Reinstallation of the front cover ṇ㠃࢝ࣂ࣮ྲྀࡅ࡙ࡵ A)A) 1) Insert the front cover setting tabs into the sockets of s
14. USING A LINEAR SERVO MOTOR 14 - 3 14.2 Signals and wiring WARNING Any person who is involved in wiring should be fully competent to do the work
14. USING A LINEAR SERVO MOTOR 14 - 4 CAUTION Do not modify the equipment. The cables such as power wires deriving from the primary side cannot sta
14. USING A LINEAR SERVO MOTOR 14 - 5 14.3 Operation and functions 14.3.1 Startup POINT When using the linear servo motor, set [Pr. PA01] to "
14. USING A LINEAR SERVO MOTOR 14 - 6 (2) Settings of the linear encoder direction and the linear servo motor direction Set the first digit of [Pr.
14. USING A LINEAR SERVO MOTOR 14 - 7 servo motor matches with the increasing direction of the linear encoder, if the linear servo motor operates in
14. USING A LINEAR SERVO MOTOR 14 - 8 (3) Linear encoder resolution setting Set the ratio of the electronic gear to the linear encoder resolution w
14. USING A LINEAR SERVO MOTOR 14 - 9 (1) Magnetic pole detection method by using MR Configurator2 The following shows the magnetic pole detection
14. USING A LINEAR SERVO MOTOR 14 - 10 (b) Magnetic pole detection by the minute position detection method ⏛ᭂᬌᤨߩ⒖േ㊂ߪ㗴ߥ߆?(ᵈ3)1) FLS(㒢ࠬ࠻ࡠࠢࡒ࠶࠻)㧘
14. USING A LINEAR SERVO MOTOR 14 - 11 (c) State transition of the servo amplifier display (3-digit, 7-segment LED) at the magnetic pole detection
14. USING A LINEAR SERVO MOTOR 14 - 12 (3) Operation at the magnetic pole detection WARNING Note that the magnetic pole detection automatically s
$7RSUHYHQWHOHFWULFVKRFNQRWHWKHIROORZLQJ:$51,1*%HIRUHZLULQJDQGLQVSHFWLRQVWXUQRIIWKHSRZHUDQGZDLWIRUPLQXWHVRUPRUHXQWL
1. FUNCTIONS AND CONFIGURATION 1 - 15 1.8 Configuration including auxiliary equipment POINT Equipment other than the servo amplifier and servo moto
14. USING A LINEAR SERVO MOTOR 14 - 13 (a) For the incremental linear encoder POINT When the incremental linear encoder is used, the magnetic pol
14. USING A LINEAR SERVO MOTOR 14 - 14 3) Linear servo motor movement (when FLS (Upper stroke limit) or RLS (Lower stroke limit) is off) When FLS o
14. USING A LINEAR SERVO MOTOR 14 - 15 (4) Magnetic pole detection method setting POINT In the following cases, set the magnetic pole detection m
14. USING A LINEAR SERVO MOTOR 14 - 16 (c) Setting example ή࠾ࠕࠛࡦࠦ࠳⏛ᭂᬌ[Pr.PL09]ߩ⸳ቯ୯ࠕࡓ[Pr.PL09]ߩ⸳ቯ୯ࠍ70ߦߒߚߣ߈ߦࠕࡓ߇⊒↢ߒߚޕ[Pr.PL09]ߩ⸳ቯ୯ࠍᄢ߈ߊߒߥ߇ࠄ㧘⏛ᭂᬌ
14. USING A LINEAR SERVO MOTOR 14 - 17 The following shows the relation between the stop interval at the home position return and the linear encoder
14. USING A LINEAR SERVO MOTOR 14 - 18 (b) When the linear encoder home position does not exist in the home position return direction If the home p
14. USING A LINEAR SERVO MOTOR 14 - 19 (2) Absolute position linear encoder When an absolute linear encoder is used, the reference home position is
14. USING A LINEAR SERVO MOTOR 14 - 20 14.3.4 Test operation mode in MR Configurator2 CAUTION The test operation mode is designed for checking serv
14. USING A LINEAR SERVO MOTOR 14 - 21 Output signals can be switched on/off forcibly independently of the servo status. This function is used for ou
14. USING A LINEAR SERVO MOTOR 14 - 22 14.3.5 Operation from controller The linear servo can be used with any of the following controllers. Servo s
1. FUNCTIONS AND CONFIGURATION 1 - 16 (2) MR-J4-350B ࣛࣥࣀࢬࣇࣝࢱ(FR-BSF01)CN5ᅇ⏕࢜ࣉࢩࣙࣥP+CL11L21P3P4ࢧ࣮࣮࣎ࣔࢱࣃ࣮ࢯࢼࣝࢥࣥࣆ࣮ࣗࢱMR Configurator2CN3CN8CN1ACN1BCN2WV
14. USING A LINEAR SERVO MOTOR 14 - 23 Note. The parameter whose symbol is preceded by * is enabled with the following conditions: * : After setting
14. USING A LINEAR SERVO MOTOR 14 - 24 (a) Position deviation error detection Set [Pr. PL04] to "_ _ _ 1" to enable the position deviatio
14. USING A LINEAR SERVO MOTOR 14 - 25 (2) Auto tuning function The auto tuning function during the linear servo operation is the same as that of t
14. USING A LINEAR SERVO MOTOR 14 - 26 14.4 Characteristics 14.4.1 Overload protection characteristics An electronic thermal is built in the servo a
14. USING A LINEAR SERVO MOTOR 14 - 27 14.4.2 Power supply capacity and generated loss Table 14.1 indicates servo amplifiers' power supply capa
14. USING A LINEAR SERVO MOTOR 14 - 28 14.4.3 Dynamic brake characteristics POINT Do not use dynamic brake to stop in a normal operation as it is t
14. USING A LINEAR SERVO MOTOR 14 - 29 14.4.4 Permissible load to motor mass ratio when the dynamic brake is used Use the dynamic brake under the lo
14. USING A LINEAR SERVO MOTOR 14 - 30 MEMO
15. USING A DIRECT DRIVE MOTOR 15 - 1 15. USING A DIRECT DRIVE MOTOR CAUTION When using the direct drive motor, read the Direct Drive Motor Instruc
15. USING A DIRECT DRIVE MOTOR 15 - 2 15.1.2 Servo system with auxiliary equipment CAUTION Connecting an inappropriate servo motor to the CNP3_ an
1. FUNCTIONS AND CONFIGURATION 1 - 17 (3) MR-J4-500B ࣛࣥࣀࢬࣇࣝࢱ(FR-BLF)CN5ᅇ⏕࢜ࣉࢩࣙࣥP+CL11L21P3P4ࢧ࣮࣮࣎ࣔࢱࣃ࣮ࢯࢼࣝࢥࣥࣆ࣮ࣗࢱMR Configurator2୰⥅➃ᏊྎCN3CN8ࢭ࣮ࣇࢸ࣮ࣜࣞࡲࡓ
15. USING A DIRECT DRIVE MOTOR 15 - 3 Note 1. 2. 3. 4. 5. 6. The power factor improving AC reactor can also be used. In th
15. USING A DIRECT DRIVE MOTOR 15 - 4 CAUTION When using the regenerative resistor, switch power off with the alarm signal. Otherwise, a transistor
15. USING A DIRECT DRIVE MOTOR 15 - 5 15.3.1 Startup procedure Start up the direct drive servo in the following procedure. Absolute position detecti
15. USING A DIRECT DRIVE MOTOR 15 - 6 15.3.2 Magnetic pole detection POINT The magnetic pole detection is not required for the configured absolute
15. USING A DIRECT DRIVE MOTOR 15 - 7 (1) Magnetic pole detection method by using MR Configurator2 The following shows the magnetic pole detection
15. USING A DIRECT DRIVE MOTOR 15 - 8 (b) Magnetic pole detection by the minute position detection method Is the moving distanceduring the magnetic
15. USING A DIRECT DRIVE MOTOR 15 - 9 (c) State transition of the servo amplifier display (3-digit, 7-segment LED) at the magnetic pole detection W
15. USING A DIRECT DRIVE MOTOR 15 - 10 (3) Operation at the magnetic pole detection WARNING Note that the magnetic pole detection automatically s
15. USING A DIRECT DRIVE MOTOR 15 - 11 2) Direct drive motor movement (when FLS and RLS are on) Magnetic pole detection completion positionServo-on
15. USING A DIRECT DRIVE MOTOR 15 - 12 2) Execute the magnetic pole detection. (Refer to (2) (a) 1), 2) of this section.) 3) After the completion
1. FUNCTIONS AND CONFIGURATION 1 - 18 (4) MR-J4-700B ࣛࣥࣀࢬࣇࣝࢱ(FR-BLF)CN5ᅇ⏕࢜ࣉࢩࣙࣥP+CL11L21P3P4ࢧ࣮࣮࣎ࣔࢱࣃ࣮ࢯࢼࣝࢥࣥࣆ࣮ࣗࢱMR Configurator2୰⥅➃ᏊྎCN3CN8ࢭ࣮ࣇࢸ࣮ࣜࣞࡲࡓ
15. USING A DIRECT DRIVE MOTOR 15 - 13 3) Perform the magnetic pole detection again with the final setting value. (c) Setting example ExistentNon-
15. USING A DIRECT DRIVE MOTOR 15 - 14 (2) Servo system controller setting The following parameters will be valid by turning the servo amplifier po
15. USING A DIRECT DRIVE MOTOR 15 - 15 15.3.4 Function (1) Servo control error detection function POINT For the servo control error detection fun
15. USING A DIRECT DRIVE MOTOR 15 - 16 (c) Torque deviation error detection level Set [Pr. PL04] to "_ _ _ 4" to enable the torque deviat
15. USING A DIRECT DRIVE MOTOR 15 - 17 10001001010.10 50 150 200 250 300100(ᵈ)⽶⩄₸[%]ᬺᤨ㑆[s]ࠨࡏࡠ࠶ࠢᤨㆇォᤨTM-RFM002C20, TM-RFM004C20, TM-RFM006C20, TM-RF
15. USING A DIRECT DRIVE MOTOR 15 - 18 15.4.2 Power supply capacity and generated loss Table 15.1 indicates servo amplifiers' power supply capa
15. USING A DIRECT DRIVE MOTOR 15 - 19 (1) Dynamic brake operation (a) Calculation of coasting distance Fig. 15.3 shows the pattern in which the s
15. USING A DIRECT DRIVE MOTOR 15 - 20 (b) Dynamic brake time constant The following shows necessary dynamic brake time constant IJ for equation 15.
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 1 16. FULLY CLOSED LOOP SYSTEM (available in the future) POINT When fully closed loop c
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 2 The following table shows the functions of each control mode. %QPVTQN &GUETKRVKQP
2. INSTALLATION 2 - 1 2. INSTALLATION WARNING To prevent electric shock, ground each equipment securely. CAUTION Stacking in excess of the spec
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 3 16.1.2 Selecting procedure of control mode (1) Control mode configuration In this ser
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 4 16.1.3 System configuration (1) For a linear encoder ࠨࡏࠕࡦࡊCN2SSCNETΥ/Hࠦࡦ࠻ࡠSSCNETΥ/
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 5 16.2 Load-side encoder POINT Always use the load-side encoder cable introduced in thi
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 6 (2) Rotary encoder Refer to Linear Encoder Instruction Manual for encoder cables for r
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 7 16.2.4 MR-J4FCCBL03M branch cable Use MR-J4FCCBL03M branch cable to connect the rotary
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 8 16.3 Operation and functions 16.3.1 Startup (1) Startup procedure Start up the fully c
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 9 (2) Selection of fully closed loop system By setting [Pr. PA01], [Pr. PE01] and the c
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 10 (3) Setting of feedback pulse electronic gear POINT If an incorrect value is set i
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 11 (b) Setting example when using the rotary encoder for the load-side encoder of roll
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 12 (4) Confirmation of load-side encoder position data Check the load-side encoder moun
2. INSTALLATION 2 - 2 2.1 Installation direction and clearances CAUTION The equipment must be installed in the specified direction. Otherwise, it m
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 13 (5) Setting of fully closed loop dual feedback filter With the initial value (settin
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 14 16.3.2 Home position return (1) General instruction Home position return is all perfo
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 15 (b) About proximity dog type home position return using incremental linear encoder 1
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 16 POINT To execute a home position return securely, start a home position return after
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 17 16.3.3 Operation from controller The fully closed loop control compatible servo ampli
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 18 (a) When using a linear encoder (unit setting: mm) ᓸಽAPALࠨࡏࡕ࠲ ࠾ࠕࠛࡦࠦ࠳⟎ࡈࠖ࠼ࡃ࠶ࠢ[mm
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 19 16.3.4 Fully closed loop control error detection functions If fully closed loop contr
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 20 (b) Position deviation error detection Set [Pr. PE03] to "_ _ _ 2" to enab
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 21 16.3.5 Absolute position detection system under fully closed loop system An absolute
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 22 16.3.6 About MR Configurator 2 Using MR Configurator2 can confirm if the parameter se
2. INSTALLATION 2 - 3 (b) Installation of two or more servo amplifiers POINT Close mounting is possible depending on the capacity of the servo am
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 23 Symbol 0COG 'ZRNCPCVKQP 7PKVf) Motor side cumu. feedback pulses (before gear) F
16. FULLY CLOSED LOOP SYSTEM (available in the future) 16 - 24 MEMO
APPENDIX App. - 1 App. 1 Auxiliary equipment manufacturer (for reference) Names given in the table are as of January 2012. Manufacturer Reference J
APPENDIX App. - 2 (c) New handling label design containing battery illustration must be used. (only air transportation) Figure. Example of Mitsubi
APPENDIX App. - 3 App. 3 Symbol for the new EU Battery Directive Symbol for the new EU Battery Directive (2006/66/EC) that is plastered to general-p
APPENDIX App. - 4 (3) Machinery directive The MR-J4 series servo amplifiers comply with the safety component laid down in the Machinery directive. D
APPENDIX App. - 5 (4) Power supply (a) This servo amplifier can be supplied from star-connected supply with earthed neutral point of overvoltage ca
APPENDIX App. - 6 (e) Use the surge protector of RSPD-250-U4 manufactured by Okaya Electric Industries. (8) Performing EMC tests When EMC tests ar
APPENDIX App. - 7 (2) Installation The MR-J4 series have been approved as the products which have been installed in a cabinet. The minimum cabinet s
APPENDIX App. - 8 Table: Recommended crimp terminals Servo amplifier side crimp terminals Symbol(Note 2) Crimp terminals Applicable tool Manufacture
2. INSTALLATION 2 - 4 (3) When installing the cabinet in a place where toxic gas, dirt and dust exist, conduct an air purge (force clean air into t
APPENDIX App. - 9 (9) Configuration diagram Representative configuration diagram example to conform to the UL/CSA standard is shown below. The groun
APPENDIX App. - 10 App. 7 MR-J3-D05 Safety logic unit App. 7.1 Contents of the package Open packing, and confirm the content of packing. Contents Q
APPENDIX App. - 11 App. 7.3 Cautions The following basic safety notes must be read carefully and fully in order to prevent injury to persons or dama
APPENDIX App. - 12 (7) Perform all risk assessments and safety level certification to the machine or the system as a whole. It is recommended that a
APPENDIX App. - 13 App. 7.6 Maintenance and disposal MR-J3-D05 safety logic unit is equipped with LED displays to check errors for maintenance. Plea
APPENDIX App. - 14 App. 7.7.2 Specifications Safety logic unit model MR-J3-D05 Voltage 24 V DC Control circuit power supply Permissible voltage
APPENDIX App. - 15 App. 7.7.3 When using MR-J3-D05 with a MR-J4 series servo amplifier (1) System configuration diagram POINT The STO cable (MR-D
APPENDIX App. - 16 (2) Connection example STO1453678CN3EM2(Bゲ)CN8SDO1A+ 4A4BSDO1A-SDI1A+ 1A1BSDI1A-SDI2A+SRESA+SDO2A+TOFA3A3B1A1B6A6B8ASDI2A-SDO2A-S
APPENDIX App. - 17 (3) Description of signal and function The following table lists which operation, the forced stop deceleration or the dynamic br
APPENDIX App. - 18 App. 7.8 Signal App. 7.8.1 Connector/pin assignment (1) CN8A Device Symbol Pin No. Function/application (Note)I/O A-axis STO1 S
2. INSTALLATION 2 - 5 (3) Precautions for migrating plasticizer added materials Generally, soft polyvinyl chloride (PVC), polyethylene resin (PE) a
APPENDIX App. - 19 (4) CN10 Device Symbol Pin No. Function/application I/O divisionA-axis shutdown 2 SDI2A+ SDI2A- 3A 3B Connect this device to a s
APPENDIX App. - 20 (b) Digital output interface DO-1 A lamp, relay or photocoupler can be driven. Install a diode (D) for an inductive load, or ins
APPENDIX App. - 21 App. 7.8.3 Wiring CN9 and CN10 connectors Handle with the tool with care when connecting wires. (1) Wire strip (a) Use wires wi
APPENDIX App. - 22 2) Connecting wires a) Confirm the model number of the housing, contact and tool to be used. b) Insert the tool diagonally into
APPENDIX App. - 23 (b) Using a screwdriver To avoid damaging housings and springs when wiring with screwdriver, do not put excessive force. Be caut
APPENDIX App. - 24 (3) Connector insertion Insert the connector all the way straight until you hear or feel clicking. When removing the connector, d
APPENDIX App. - 25 App. 7.9 LED display I/O status, malfunction and power on/off are displayed with LED for each A-axis and B-axis. LED LED Definit
APPENDIX App. - 26 App. 7.11 Troubleshooting When power is not supplied or FAULT LED turns on, refer the following table and take the appropriate ac
APPENDIX App. - 27 App. 7.13 Installation Follow the instructions in this chapter and install MR-J3-D05 in the specified direction. Leave clearances
APPENDIX App. - 28 No. Product Model Description 1) Connector MR-J3-D05 attachment connector Connector for CN9: 1-1871940-4 (TE Connectiv
2. INSTALLATION 2 - 6 (7) Twisting If optical fiber is twisted, it will become the same stress added condition as when local lateral pressure or ben
APPENDIX App. - 29 App. 8 EC declaration of conformity The MR-J3-D05 safety logic unit complies with the safety component laid down in the Machinery
APPENDIX App. - 30 App. 9 How to replace servo amplifier without magnetic pole detection CAUTION Be sure to write the magnetic pole information of t
APPENDIX App. - 31 2) 3) 4) 1) App. 10 Two-wire type encoder cable for HG-MR/HG-KR Use a two-wire type encoder cable for the fully closed loop cont
APPENDIX App. - 32 App. 10.2 Connector set Connector set 1) Servo amplifier-side connector 2) Servo motor-side connectorReceptacle: 36210-0100PL S
APPENDIX App. - 33 App. 11 SSCNET III cable (SC-J3BUS_M-C) manufactured by Mitsubishi Electric System & Service POINT For the details of the SS
APPENDIX App. - 34 (2) Setting POINT When you use a linear servo motor, replace the following left words to the right words. (servo motor) speed
APPENDIX App. - 35 Setting value Output item Description Setting valueOutput item Description 0A Feedback position (Note 1, 2, 4) (±10 V/1 Mpul
APPENDIX App. - 36 (3) Analog monitor block diagram (a) Semi closed loop control ḳࠅࡄ࡞ࠬㅦᐲᜰ⟎ᓮㅦᐲᓮPWM㔚ᵹᓮ㔚ᵹᜰ Უ✢㔚ㅦᐲᜰ㔚ᵹᬌེ+ࠨࡏࡕ࠲ࠛࡦࠦ࠳㔚ᵹࡈࠖ࠼ࡃ࠶ࠢ
APPENDIX App. - 37 (b) Fully closed loop control (Available in the future.) FBNFBDḳࠅࡄ࡞ࠬㅦᐲᜰ⟎ᓮㅦᐲᓮPWM㔚ᵹᓮ㔚ᵹᜰ Უ✢㔚ㅦᐲᜰ㔚ᵹᬌེ+ࠨࡏࡕ࠲ࠛࡦࠦ࠳㔚ᵹࡈࠖ࠼ࡃ࠶ࠢ⟎
REVISIONS *The manual number is given on the bottom left of the back cover. Print Data *Manual Number Revision Mar. 2012 SH(NA)030106-A First edi
$7RSUHYHQWLQMXU\QRWHWKHIROORZLQJ&$87,212QO\WKHYROWDJHVSHFLILHGLQWKH,QVWUXFWLRQ0DQXDOVKRXOGEHDSSOLHGWRHDFKWHUPLQDO2
2. INSTALLATION 2 - 7 2.6 Parts having service lives Service lives of the following parts are listed below. However, the service lives vary dependin
7HO)D[7HO)D[7HO)D[7HO)D[7HO
Warranty 1. Warranty period and coverage We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment her
SH (NA) 030106-A (1203) MEE Printed in Japan Specifications subject to change without notice. This Instruction Manual uses recycled paper.MODELMO
HEADQUARTERSEUROPEMITSUBISHI ELECTRIC EUROPE B.V.German BranchGothaer Straße 8D-40880 RatingenPhone: +49 (0)2102 / 486-0Fax: +49 (0)2102 / 486-1120CZE
2. INSTALLATION 2 - 8 MEMO
3. SIGNALS AND WIRING 3 - 1 3. SIGNALS AND WIRING WARNING Any person who is involved in wiring should be fully competent to do the work. Before wir
3. SIGNALS AND WIRING 3 - 2 CAUTION Connect the servo amplifier power output (U, V, and W) to the servo motor power input (U, V, and W) directly. D
3. SIGNALS AND WIRING 3 - 3 Configure the wiring so that the main circuit power supply is shut off and the servo-on command turned off after decelera
3. SIGNALS AND WIRING 3 - 4 (1) For 3-phase 200 V AC to 240 V AC power supply of MR-J4-10B to MR-J4-350B MC(Note 7)ALMDICOMDOCOMCN3(Note 5)24 V DCM
3. SIGNALS AND WIRING 3 - 5 (2) For 1-phase 200 V AC to 240 V AC power supply of MR-J4-10B to MR-J4-70B POINT Connect the 1-phase 200 V AC to 240
3. SIGNALS AND WIRING 3 - 6 (3) MR-J4-500B ALMDICOMDOCOMCN3RA1L1L2L3L11L21P3CN-P+P4UVWTE1TE4PETE3TE2UVWCN2MCMCSKCN3EM2DOCOMCN8DTE43-phase200 V AC to
3. SIGNALS AND WIRING 3 - 7 (4) MR-J4-700B CP+TE1L11L21TE2P3P4N-TE3Built-inregenerativeresistorALMDICOMDOCOMCN3L1L2L3UVWPECN2MCMCSKCN3EM2DOCOMCN8MCC
3. SIGNALS AND WIRING 3 - 8 3.2 I/O signal connection example POINT EM2 has the same function as EM1 in the torque control mode. 3.2.1 For sink
$:LULQJ&$87,21:LUHWKHHTXLSPHQWFRUUHFWO\DQGVHFXUHO\2WKHUZLVHWKHVHUYRPRWRUPD\RSHUDWHXQH[SHFWHGO\'RQRWLQVWDOODSR
3. SIGNALS AND WIRING 3 - 9 Note 1. 2. 3. 4. 5. 6. To prevent an electric shock, always connect the protective earth (PE) terminal (mark
3. SIGNALS AND WIRING 3 - 10 3.2.2 For source I/O interface POINT For notes, refer to section 3.2.1. 1020EM221912DI1DI3DI213 MBR9INP15 ALM6LA16 L
3. SIGNALS AND WIRING 3 - 11 3.3 Explanation of power supply system 3.3.1 Signal explanations POINT For the layout of connector and terminal block,
3. SIGNALS AND WIRING 3 - 12 3.3.2 Power-on sequence (1) Power-on procedure 1) Always wire the power supply as shown in above section 3.1 using the
3. SIGNALS AND WIRING 3 - 13 3.3.3 Wiring CNP1, CNP2, and CNP3 POINT For the sizes of wires used for wiring, refer to section 11.11. MR-J3-500B or
3. SIGNALS AND WIRING 3 - 14 (2) Cable connection procedure (a) Cable making Refer to table 3.1 and 3.2 for stripped length of cable insulator. The
3. SIGNALS AND WIRING 3 - 15 3.4 Connectors and pin assignment POINT The pin assignment of the connectors are as viewed from the cable connector wi
3. SIGNALS AND WIRING 3 - 16 The servo amplifier front view shown is that of the MR-J4-20B or less. Refer to chapter 9 DIMENSIONS for the appearance
3. SIGNALS AND WIRING 3 - 17 3.5 Signal (device) explanations For the I/O interfaces (symbols in I/O division column in the table), refer to section
3. SIGNALS AND WIRING 3 - 18 3.5.2 Output device (1) Output device pin The following shows the output device pins and parameters for assigning devi
$&$87,21%XUQLQJRUEUHDNLQJDVHUYRDPSOLILHUPD\FDXVHDWR[LFJDV'RQRWEXUQRUEUHDNLW8VHWKHVHUYRDPSOLILHUZLWKWKHVSHFLIL
3. SIGNALS AND WIRING 3 - 19 Device Abbreviation Function and application Warning WNG When warning has occurred, WNG turns on. Without warning oc
3. SIGNALS AND WIRING 3 - 20 3.6 Forced stop deceleration function POINT When alarms not related to the forced stop function occur, control of moto
3. SIGNALS AND WIRING 3 - 21 3.6.2 Base circuit shut-off delay time function The base circuit shut-off delay time function is used to maintain power
3. SIGNALS AND WIRING 3 - 22 3.6.3 Vertical axis freefall prevention function The vertical axis freefall prevention function avoids machine damage b
3. SIGNALS AND WIRING 3 - 23 3.6.4 Residual risks of the forced stop function (EM2) (1) The forced stop function is not available for alarms that a
3. SIGNALS AND WIRING 3 - 24 3.7 Alarm occurrence timing chart CAUTION When an alarm has occurred, remove its cause, make sure that the operation s
3. SIGNALS AND WIRING 3 - 25 (2) When the forced stop deceleration function is invalid MBR(Electromagneticbrake interlock)ONOFFON (no alarm)OFF (al
3. SIGNALS AND WIRING 3 - 26 3.8 Interfaces 3.8.1 Internal connection diagram POINT Refer to section 13.3.1 for the CN8 connector. ±10 V DC±10 V
3. SIGNALS AND WIRING 3 - 27 3.8.2 Detailed description of interfaces This section provides the details of the I/O signal interfaces (refer to the I
3. SIGNALS AND WIRING 3 - 28 (3) Encoder output pulses DO-2 (differential line driver type) (a) Interface Max. output current: 35 mA 150 ˖100 ˖Am26
$',6326$/2):$67( 3OHDVHGLVSRVHDVHUYRDPSOLILHUEDWWHU\SULPDU\EDWWHU\DQGRWKHURSWLRQVDFFRUGLQJWR\RXUORFDOODZVDQGUHJX
3. SIGNALS AND WIRING 3 - 29 3.8.3 Source I/O interface In this servo amplifier, source type I/O interfaces can be used. In this case, all DI-1 inpu
3. SIGNALS AND WIRING 3 - 30 3.9 SSCNET III cable connection POINT Do not look directly at the light generated from CN1A/CN1B connector of the serv
3. SIGNALS AND WIRING 3 - 31 3) With holding a tab of SSCNET III cable connector, make sure to insert it into the CN1A and CN1B connector of the se
3. SIGNALS AND WIRING 3 - 32 3.10 Servo motor with an electromagnetic brake 3.10.1 Safety precautions CAUTION Configure an electromagnetic brake ci
3. SIGNALS AND WIRING 3 - 33 3.10.2 Timing chart (1) When you use the forced stop deceleration function POINT To enable the function, set "2
3. SIGNALS AND WIRING 3 - 34 (b) EMG stop 2 switch on/off POINT In the torque control mode, the forced stop deceleration function is not availabl
6,*1$/6$1':,5,1*H 0DLQFLUFXLWSRZHUVXSSO\RIIGXULQJFRQWUROFLUFXLWSRZHUVXSSO\RQ32,17,QWKHWRUTXHFRQWUROPRGHWKH
3. SIGNALS AND WIRING 3 - 36 (2) When you do not use the forced stop deceleration function POINT To disable the function, set "0 _ _ _"
3. SIGNALS AND WIRING 3 - 37 (f) Ready-off command from controller It is the same as (1) (f) in this section. 3.11 Grounding WARNING Ground the s
6,*1$/6$1':,5,1*0(02
$86FXVWRPDU\XQLWV!!86FXVWRPDU\XQLWVDUHQRWVKRZQLQWKLVPDQXDO&RQYHUWWKHYDOXHVLIQHFHVVDU\DFFRUGLQJWRWKHIROORZLQJWDE
4. STARTUP 4 - 1 4. STARTUP WARNING Do not operate the switches with wet hands. Otherwise, it may cause an electric shock. CAUTION Before start
4. STARTUP 4 - 2 4.1.1 Startup procedure Check whether the servo amplifier and servo motor are wired correctly using visual inspection, DO forced ou
4. STARTUP 4 - 3 4.1.2 Wiring check (1) Power supply system wiring Before switching on the main circuit and control circuit power supplies, check th
4. STARTUP 4 - 4 3) When you use a brake unit and power regenerative converter for over 7 kW The lead wire of built-in regenerative resistor connect
4. STARTUP 4 - 5 4.2 Startup Connect the servo motor with a machine after confirming that the servo motor operates properly alone. (1) Power on Whe
4. STARTUP 4 - 6 (5) Stop If any of the following situations occurs, the servo amplifier suspends the running of the servo motor and brings it to a
4. STARTUP 4 - 7 The following explains the test operation select switch, the disabling control axis switch, auxiliary axis number setting switches,
4. STARTUP 4 - 8 (3) Switches for setting control axis No. POINT The control axis No. set to the auxiliary axis number setting switches (SW2-3 and
4. STARTUP 4 - 9 (c) Switch combination list for the control axis No. setting The following lists show the setting combinations of the auxiliary axi
4. STARTUP 4 - 10 4.3.2 Scrolling display (1) Normal display When there is no alarm, the axis No. and blank are displayed in rotation. ⁁ᘒ␜(1ᩴ)ゲ⇟ภ(2
$0(02
4. STARTUP 4 - 11 4.3.3 Status display of an axis (1) Display sequence ਅ2ᩴߩࠣࡔࡦ࠻ߪゲ⇟ภࠍ␜ߒ߹ߔޕࠨࡏࠪࠬ࠹ࡓࠦࡦ࠻ࡠ㔚Ḯࠝࡦ(SSCNETΥ/Hㅢା㐿ᆎ)࠺ࠖࠝࡦࠨࡏࠝࡦㅢᏱㆇォࠨࡏࠪࠬ࠹ࡓࠦࡦ࠻ࡠ
67$5783,QGLFDWLRQOLVW,QGLFDWLRQ 6WDWXV 'HVFULSWLRQ,QLWLDOL]LQJ 6\VWHPFKHFNLQSURJUHVV$ E ,QLWLDOL]LQJ3RZHURIWKH
4. STARTUP 4 - 13 4.4 Test operation Before starting actual operation, perform test operation to make sure that the machine operates normally. Refer
4. STARTUP 4 - 14 4.5.1 Test operation mode in MR Configurator2 POINT When the test operation mode is selected with the test operation select switc
4. STARTUP 4 - 15 2) Operation method Operation Screen control Forward rotation start Click the "Forward" button. Reverse rotation start
4. STARTUP 4 - 16 (2) Operation procedure 1) Turn off the power. 2) Turn "ON (up)" SW2-1. SW2-1ࠍ"ࠝࡦ()"ߦ⸳ቯ1ON2 3 4 Turning &quo
4. STARTUP 4 - 17 4.5.2 Motor-less operation in controller POINT Use motor-less operation which is available by making the servo system controller
4. STARTUP 4 - 18 (2) Operation procedure 1) Set the servo amplifier to the servo-off status. 2) Set [Pr. PC05] to "_ _ _ 1", turn "
5. PARAMETERS 5 - 1 5. PARAMETERS CAUTION Never adjust or change the parameter values extremely as it will make operation unstable. If fixed values
5. PARAMETERS 5 - 2 5.1.1 Basic setting parameters ([Pr. PA_ _ ]) Operation mode No. Symbol Name Initial value Unit Standard (Note) Full. Lin. D.D.
Comentarios a estos manuales